近年来,锂离子电池性能和容量等不断提升,其用途范围也随之不断扩大,例如大型储能系统、数据中心的备用电源装置、电动汽车、次世代出行、家电、移动设备等。
锂离子电池在性能提升和用途扩大给社会带来巨大贡献的同时,其存在的弊端也不容忽视,如电池发热,起火等事故也频发不断。
锂离子电池的危险性
锂离子电池(LIB)在使用和保管或是运输过程中,如果受到外部过载(过充或短路、震动、冲击、高低温等)作用时,会发生以下现象。
- 热失控*
- 电解液泄漏
- 内压上升导致内部气体泄漏
- 电解液发生热分解反应等
* 所谓热失控,指锂离子电池(LIB)在充放电等情况下产生的热量导致内部温度上升,进而致使电池失控的现象。
这些问题均是由于锂离子电池(LIB)内部的电解质受到高温、压力等外力作用急速发热而引起的。这甚至可能会导致起火、爆炸等重大事故。
过热·冒烟
起火导致的火灾
锂离子电池出现异常时
产生的气体成分
锂离子电池(LIB)发生异常时,其产生的气体主要成分除了氢气(H2)、一氧化碳(CO)、甲烷(CH4)、二氧化碳(CO2)以外,还存在烃类VOC气体(EMC、DMC、ECD等※)。
这些烃类VOC气体通常被认为是LIB电解液中的有机溶剂或者为其热分解物。
※ EMC : 碳酸甲乙酯 (Ethyl Methyl Carbonate)、
DMC : 碳酸二甲酯 (Dimethyl Carbonate)
DEC : 碳酸二乙酯 (Diethyl Carbonate)、
EC:碳酸乙酯(Ethyl Carbonate)
通过在LIB应用设备的安全装置内设置下述各种气体传感器,即便是在人工难以监测的场所,也可及早检测出锂离子电池(LIB)发生异常时所产生的各种气体,进而可对LIB出现异常而引起的重大事故防患于未然。
- 氢气(H2)传感器
- 一氧化碳(CO)传感器
- VOC传感器
- 二氧化碳(CO2)传感器
- 甲烷(CH4)传感器
气体传感器的安全应用事例
下述用途中,为提升锂离子电池的安全性,使用氢气(H2)、一氧化碳(CO)、VOC气体、甲烷(CH4)、二氧化碳(CO2)等传感器可起到显著效果。
-
储能系统
-
大型备用电源
-
锂离子电池制造工厂
-
工业用设备
-
电动汽车